
JavaScript:
Functions,
Objects and
More
Lecture 2 (A)

ICT375 Advanced Web Programming
Semester 1, 2021

NodeJS

2Lecture Objectives

n Relevance to unit objectives:
n Learning objective 2: Writing software

n Relevance to assessments:
n Much of your programming in this unit (Labs and

Assignments) will be written in the JavaScript
programming language within the Node.js
environment

3Lecture Outline

n Why use JavaScript for this unit?
n Advanced features of JavaScript programming

language
n Revision of JavaScript basic language features
n JavaScript functions: anonymous, closures
n Arrays in JavaScript
n JavaScript object-oriented features

n How to get up to speed with JavaScript

4Introduction

n This lecture will NOT be a general “Introduction
to Programming” lecture
n It is assumed that you are already familiar with

programming from previous units like ICT159,
ICT167 and ICT286

n Instead, we will review the basics, and then
cover advanced features of JavaScript
n Please read recommended textbooks for a more

complete coverage of the language syntax
n You should refer to language references (online)

listed at the end of these lecture slides when you
start doing your programming exercises

5Advantages of JavaScript

n JavaScript is a scripting language that
historically allows us to design interactive web
pages

n Some of the usage are:
n Browser detection
n Opening pages in customized windows
n Validating input fields before and when submitting a

form
n Changing the web page in response to user action

6

n Unfortunately, JavaScript has weaknesses:
n Though there is an agreed upon standard called
ECMAScript, vendors apply this standard to their own
implementation in their own 'unique' way (much like
differences between browsers)

n JavaScript is not as strictly ‘typed’ as other languages
n This can introduce undesirable, sloppy programming

practices
n TypeScript was introduced to deal this problem

n There are many different ways to do the same thing in
JavaScript

n This can lead to lack of consistency and uniformity within
development teams

Disadvantages of JavaScript

7Why JavaScript in this Unit?

n The reasons for using JavaScript in this unit:
n JavaScript usage is much more powerful and

flexible now than it was in its traditional usage
n A large community of programmers / developers are now

taking its usage into many new areas
n We will be using the Node.js development

environment to demonstrate client / server
architecture

n Node.js is a JavaScript implementation

8JavaScript in HTML

n JavaScript was originally used in HTML pages
for the reasons mentioned on slide 6

n Here we provide a very brief review:
n The primary method of inserting JavaScript into an

HTML page is via the <script> element
n There are six attributes for the <script> element

(all of which are optional): async, charset, defer,
language (deprecated), src, type

n Please investigate these attributes as needed
n You can review your material from ICT286

9

n Two main ways to use the <script> element:
1. Embed JavaScript code directly into HTML pages

<script type="text/javascript">
function sayHI() {

alert("HI!");
}

</script>

2. Include JavaScript code from an external file; this
requires the use of the src attribute to provide the
URL of the file with the JavaScript code in it
<script type="text/javascript" src="example.js">
</script>

JavaScript in HTML

10

n Traditionally, all <script> elements were placed
within the <head> element on a HTML page
<!DOCTYPE html>
<html>
<head>

<title>Example HTML Page</title>
<script type="text/javascript"

src="example1.js"></script>
<script type="text/javascript"

src="example2.js"></script>
</head>
<body>

<!-- content here -->
</body>

</html>

JavaScript in HTML

11

n Modern web applications allow JavaScript
references in the <body> element (i.e. within
the page content):
<!DOCTYPE html>
<html>
<head><title>Example HTML Page</title>
</head>
<body>

<!-- content here -->
<script type="text/javascript"

src="example1.js"></script>
<script type="text/javascript"

src="example2.js"></script>
</body>

</html>

JavaScript in HTML

12

§ From ICT286, you know that HTML has been
deprecated in favour of XHTML, which has now
been superseded by HTML5
§ Thus there are differences between the three, with

HTML5 and XHTML being more strict syntactically
than HTML

§ This may have some impact in relation to JavaScript
usage

§ It is therefore your responsibility to learn (or
remind yourself of) the differences between the
three, and investigate when and how this could
affect your JavaScript code

JavaScript in HTML

13

n An identifier is the name of a variable, function,
property, or function parameter

n Identifiers may consist of one or more
characters in the following format:
n The first character must be a letter, an underscore

(_), or a dollar sign ($)
n All other characters may be letters, underscores,

dollar signs, or numbers
n Meaningful identifiers should be used
n By convention, identifiers use camel case, meaning

that the first letter is lowercase and each additional
word is offset by a capital letter, like this:
doSomethingImportant

JavaScript Language Basics

14

n Variables, function names, and operators are all
case-sensitive, meaning that a variable named
‘test’ is different from a variable named ‘Test’
n Eg: ‘typeof’ can not be the name of a function,

because it is a keyword (we will look at keywords
shortly)

n However, ‘typeOf’ is a perfectly valid function name

JavaScript Language Basics

15Comments and Statements

n JavaScript uses C-style comments
n Single-line comments use //
n Block comments use /* multiple lines */

n It is recommended that all statements in
JavaScript be terminated with a semicolon
n Importantly, this improves parser performance and

also code readability and maintainability
n Like C, multiple statements require braces (curly

brackets), to indicate a block of code
Eg: { … block of code … }

16Strict Mode

n Strict mode is a parsing and execution method
where some of the erratic behavior (of earlier
versions) are addressed, and errors are thrown
for unsafe activities

n To enable strict mode, place the following
directive at the top of your JavaScript:
"use strict";// quotes and semicolon required

n Using the strict directive, is recommended
practice

17Keywords and Reserved Words

§ The table above was presented in ICT286;
you should review the keywords above

18JavaScript Variables

n JavaScript variables are loosely typed, which
means that a variable can hold any type of data
n Every variable is simply a named place-holder for a

value
n To define a variable, use the var keyword

followed by the variable name
n Eg:

var message; // defined or declared
message = "Hi!"; // initialized
message = 43; // valid but not recommended

19JavaScript Variable Scope
n It is important to note that using the var keyword

to declare a variable makes its scope local to
where it was defined

n For example, within if, if-else, switch, looping
structures and functions, a var defined variable
is local to that structure
function test()
{

var message = "Hi!"; // local variable
}
test(); // correct output
console.log(message); // error

20

n In the previous example, the variable is defined
inside the function using var

n This means that the local variable is destroyed
as soon as the function exits
n After calling and exiting the function, an attempt to

access the variable is made, so the last line causes
an error

n If you want a variable for local use only, then
this is legal and appropriate
n However, if you attempt to access a variable

declared locally (from outside its scope), then an
error ensues

JavaScript Variable Scope

21

n It is also possible to define a variable without
using the var keyword

n Such a variable will be globally available inside
and outside functions, etc.
n However, this is not recommended practice, as

global variables defined locally are hard to debug
and can cause confusion and error

function test(){
message = "Hi!"; // global variable

}
test();
console.log(message); // prints "Hi!"

JavaScript Variable Scope

22

n A much better approach is to define a variable
globally using the var keyword

n The variable is then still accessible wherever it
is needed, but may avoid logic errors
n However, you should exercise due care with the use

of global variables
var message; // global variable
function test(){

message = "Hi!";
}
test();
console.log(message); // prints "Hi!"

JavaScript Variable Scope

23

n For all tutorials and assignments it is expected
that your JavaScript code will demonstrate the
following recommended practices:
n ‘strict’ mode should be used
n All statements should be semicolon terminated
n Meaningful identifiers should be used (camel-case

where appropriate)
n Variables should be declared using keyword var (or

let)
n Only use global variables when necessary

n Correct code layout should be used
n Application design must be modular

JavaScript Code:
Expected Standard

24JavaScript Data Types

n There are 5 simple data types (also called
primitive types) in JavaScript:
1. Undefined - has only one value: the special value

undefined
2. Null - has only one value: the special value null
3. Boolean - has only two possible literal values: true

or false
4. Number - uses the IEEE-754 format to represent

integers and floating-point values
5. String - represents a sequence of zero or more

16-bit Unicode characters

25

n There is also a complex data type:
6. Object is an unordered list of property:value

pairs
n There is no way to define your own data types

in JavaScript, so all values can be represented
as one of the previous six data types

n Defining an object is often considered defining
your own data type
n This will be discussed further when we look at O-O

programming in JavaScript

JavaScript Data Types

26

n These data types were covered in detail in
ICT286, so we will not go into the details here

n However, you should review that material for
yourself
n For your convenience, the appropriate slides have

been included at the end of this set of lecture slides
(73-82)

JavaScript Data Types

27typeof Operator

n As JavaScript is loosely typed, we often need to
determine the data type of a value stored in a
given variable

n The typeof operator returns one of the
following string values:
n "undefined" if the value is undefined
n "boolean" if the value is a Boolean
n "string" if the value is a string
n "number" if the value is a number
n "object" if the value is an object (other than a

function) or null
n "function" if the value is a function

28Operators and Control Structures

n JavaScript provides the following operators:
n Increment/Decrement (pre and post ++, --)
n Mathematical Operators (+, -, *, /, % (modulus on

integer division))
n Assignment Operators (=, +=, -=, *=, /=)
n Relational Operators (==, ===, >, >= , <, <=)

n The == operator will compare for equality after doing any
necessary (implicit) type conversion

n The === operator performs identically to == except it
does not perform any type conversion

29Operators and Control Structures

n Logical Operators (&&, ||, !)
n The Conditional Operator

variable = boolean_expression ? true_value : false_value;

n Bitwise and Shift operators
n Look up for yourself

30

n JavaScript provides the following control
structures:
n if, if-else, and nested if-else statements
n switch-case statements
n for loop (and variations)
n while loop
n do-while loop

n Operators and control structures work the same
way as they do in C, C++, and Java

n You should investigate for yourself in the case
of any slight variances

Operators and Control Structures

31Functions in JavaScript

§ Functions in JavaScript are declared using the
function keyword, followed by an optional set
of parameters (in parentheses) and then the
body of the function

§ The basic syntax is as follows:
function functionName([param0,param1,...,paramN]) {

// statements
}

function sayHi(name, message) { // note no data types
console.log("Hello " + name + ", " + message);

}

32

§ The previous function can be called as follows:
// passing string literals as arguments
sayHi("Nicholas", "how are you today?");
OR
// passing pre-defined/initialized variables as arguments
var arg1 = " … "; var arg2 = " … ";
sayHi(arg1, arg2);

§ Any function can return a value at any time by
using the return statement followed by an
optional value
function sum(num1, num2) {

return (num1 + num2);

}

Functions in JavaScript

33

§ A function stops executing immediately after
the last executed statement OR upon
encountering the return statement (possibly
returning a specified value)

§ The return statement can be used without
specifying a return value
§ Commonly used with branching statements
§ When used in this way, the function stops

executing immediately and returns the value
undefined

Functions in JavaScript

34Understanding Arguments

§ JavaScript functions do not care:
§ How many parameters are listed
§ The order in which they are listed
§ The data types of the parameters

§ Just because you define a function to accept
two parameters does not necessarily mean you
have to pass in two arguments when calling the
function
§ You could pass in one or three or none, and the

interpreter will not complain

35

§ JavaScript will not complain about type mis-
matches between the parameter and argument lists

§ You can pass parameters or arguments in any
order

§ Caution: in order to avoid errors in logic and
functionality, a disciplined approach should be
adopted to keep track of such issues

Understanding Arguments

36

§ The situation just mentioned is permitted
because arguments in a function call are
internally represented as elements in an array
(specifically an Array object – more on this
later)
§ The Array object is always passed into a function,

but the function does not care what (if anything) is
in the Array object

Understanding Arguments

37

§ The name of the Array object is arguments
§ It is passed into all functions, and can be

accessed from within a function to retrieve
values of any argument passed in
§ You can access the arguments array using the

square bracket notation
§ The first argument is arguments[0], the second

is arguments[1], and so on …

Understanding Arguments

38

§ In our example on slide 31, the sayHi()
function's first parameter is called ‘name’

§ The corresponding argument in the function call
can be accessed by referencing arguments[0]

§ Therefore, the function can be re-written without
naming the parameters explicitly:
function sayHi() { // note: no parameters

console.log("Hello "+arguments[0]+", "+arguments[1]);
}
// call function with arguments
sayHi("Nicholas", "how are you today?");

Understanding Arguments

39

§ Note this function is defined with no parameter list
§ The name and message parameters have been

removed, yet the function can still access the
appropriate argument values (passed in the
function call)

§ The length property of the arguments object
can be used to obtain the number of arguments
available to the function:
function howManyArgs() {

console.log(arguments.length);
}

Understanding Arguments

40

§ Any named parameter (in a function definition) is
automatically assigned the value undefined when
no value is passed as an argument in the function call

§ This means that unlike other languages, JavaScript
functions cannot be overloaded in the traditional
sense
§ Overloading requires an exact signature match

§ If two functions are defined to have the same
signature (overloaded), it is the last function that
becomes the owner of that name

Understanding Arguments

41

§ A function without a name is called an
anonymous function

§ You can assign such a function to a variable
§ The idea is that, if you are going to use a function

as a variable (and not refer to it by its function
name), then you do not need to name the function
when defining it

§ Thus, the following methods are equivalent

Anonymous Functions

42

// function name given, but is just wasted characters

var foo1 = function namedFunction() {
console.log('foo1');

}
foo1(); // call the function via the variable foo1

// no function name provided, i.e. anonymous function
var foo2 = function () {

console.log('foo2');
}
foo2(); // call the function via the variable foo2

Anonymous Functions

43

§ Since JavaScript allows us to assign functions to
variables, we can pass functions to other functions

§ Such functions are called higher-order functions
function say(word) { // function with one parameter

console.log(word); // prints value of parameter
}

// function with 2 parameters; a function and a value
function execute(someFunction, value) {

someFunction(value); // calls the ‘say’ function
}

//function call; pass function ‘say’ and a string
execute(say, “Hello”);

Higher Order Functions

44

§ Example of a normal and an anonymous
function passed as a parameter:
// using normal function definition
function foo() {

console.log('2000 milliseconds have passed');
}
setTimeout(foo, 2000); // calls function foo

// declaring anonymous function in argument list
setTimeout(function () {

console.log('2000 milliseconds have passed');
}, 2000); // delay 2000 milliseconds or 2 seconds

Higher Order Functions

45

§ A closure is a combination of a function and
the lexical environment within which that
function is declared
§ Lexical environment can be defined as the

association of identifiers to specific variables or
functions based on the nesting structure

§ So, whenever we have a function defined
inside another function, the inner function has
access to the variables declared in the outer
function

Closures

46

// demonstrating normal functionality
function outerFunction(arg) {
var variableInOuterFunction = arg;
// inner function to output variable value
function bar() {

// Access the variable from the outer scope
console.log(variableInOuterFunction);

}
// Call the local (inner) function to
// demonstrate that it has access to arg
bar();

}
// prints hello fucntion!
outerFunction('hello function!');

Closures

47

§ However, with closures, the inner function can
still access the variables from the outer scope
even after the outer function has returned
§ Variables are still bound in the inner function and

are not dependent on the outer function
§ Advanced JavaScript usage often makes use of

this functionality
§We will use this functionality when developing Web

clients and servers
§ See more examples in

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

Closures

48

// demonstrating closure functionality
function outerFunction(arg) {
var variableInOuterFunction = arg;
// returning an anonymous inner function
return function () {

console.log(variableInOuterFunction);
}
// we do not call the inner function here!

}
var innerFunction=outerFunction('hello closure!');

// outerFunction has already returned at this point
innerFunction(); // prints hello closure!

Closures

49

§ If you need to keep track of many related items,
individual variables may not be convenient

§ JavaScript, like other languages, provides arrays for
this purpose
§ Remember from other units, that an array is considered a

complex data type
§ Typically, an array can only store data of the same data

type (i.e., they are non-heterogeneous), and they are not
dynamic (if the array needs to be expanded, a
programmer must allocate more memory using
appropriate runtime methods)

Arrays

50

§ In JavaScript, you declare the array name (just as
you would a variable) and then supply a list of
comma separated values
§ What you name the array is up to you, but you should

follow the same naming conventions as for single variables

§ Each comma separated value in the list represents one
element in the array

§ To indicate an array, you can put a list of elements
between opening and closing square brackets

Creating an Array in JavaScript

51

var days =

['Mon','Tues','Wed','Thurs','Fri','Sat','Sun'];

§ You can create an empty array without any
elements and add items to the array as needed
whilst the program is running
var playList = [];

§ You can store any mix of values (data types) in
an array i.e. numbers, strings, Boolean, etc.
var prefs = [1.0, 223, 'www.oreilly.com', false];

Creating an Array in JavaScript

52

§ So, two very important points about arrays in
JavaScript which distinguish them from their
implementation in many other languages:
§ They will dynamically increase in size as new elements

are added; the programmer is thus relieved of manually
handling memory

§ They are heterogeneous; i.e., you can store different data
types in the same array
§ The advisability of storing heterogeneous data types in

the same array is questionable, but is convenient when
dealing with data from Web pages

§ This requires a disciplined approach to programming

Creating an Array in JavaScript

53

§ Access to array elements (for insertion,
modification, and retrieval) is the same as with
other languages
§ i.e., via an index number, which starts at 0
var days =

['Mon','Tues','Wed','Thurs','Fri','Sat','Sun'];

alert(days[0]); // retrieves, prints element 0

days[3] = 'Fred'; // modifies element at index 3

§ You can access the array length:
alert(days.length); // prints 7

Accessing Elements in Arrays

54

§ An JavaScript array is really an object and it
can also be created with Array constructor.

§ A JavaScript array uses indexes to access its
elements
// a new empty Array object using a constructor
var arr = new Array();

// creates a new Array object with 4 elements
var arr4 = new Array(1, "Hi", { a: 2 },

function(){console.log('boo');});
// print "Hi"
console.log(arr4[1]);

The Array Object

55

§ As an object, a JavaScript array has some special
property (such as length) and methods (inherited from
the Array.prototype global object)

§ JavaScript Array objects have methods:
§ push() – 1 or more added to end of array
§ unshift() – 1 or more added to beginning
§ pop() – 1 only removed from end of array
§ shift() – 1 only removed from beginning
§ splice() – 1 or more added or removed from

designated position in array

Accessing Elements in
Array with Methods

56

§ Many programming languages support arrays
with named indices or keys
§ Arrays with named indices are called associative

arrays (or hashes or maps)
§ JavaScript does not support associative arrays

(i.e. named indices).
§ In JavaScript, arrays always use numbered

indices

Associative Arrays

57

§ You can add named indices to an array, Eg:
var person = [1, "two"];
person["firstName"] = "John";
person["age"] = 46;

§ However, the standard array property and
methods would not apply to the elements with
the named indices. E.g.,

console.log(person.length); // print 2, not 4

console.log(person[3]); // print undefined

Associative Arrays: WARNING !!

58

§ To re-iterate, in JavaScript arrays use
numbered indices and objects use named
indices

§ Therefore:
§ You should use arrays when you want the element

index to be numbers
§ You should use objects when you want the element

index to be strings (i.e. text)

Associative Arrays

59JavaScript Objects
n Prior to ES6, JavaScript, JavaScript does not

support classes.
n It uses Object type instead of classes to

create objects.
n New objects can be created by using the new

operator followed by a constructor of type
Object

60

n A constructor is simply a function whose
purpose is to create a new object
Eg: var Person = new Object();

§ The above example creates a new instance of
the Object reference type and stores it in the
variable called Person

Object Type

61

Object Type
§ The constructor being used is Object(),

which creates a simple reference with only the
default properties and functionality

§ To this point, most of the reference value
examples have used the Object type

§ Although instances of the Object type do not
have much functionality, they are ideally suited
to storing and transmitting data around an
application

62

§ There are two ways to explicitly create an
instance of type Object

§ One way (as we have seen) is with the new
operator and the Object constructor:
var Person = new Object();

// then can add properties and/or
// functionality using the ‘dot’ notation
Person.name = "Nicholas";
Person.age = 29;

Object Type

63

§ We can also add methods to the object using
anonymous function. Eg:
Person.print = function (){

console.log("name: " + this.name);
console.log("age: " + this.age);

}

§ Note that in the above example, we need to
use the reserved word this to access the
properties of the object.

Object Type

64

§ The other way uses the object literal notation
var Person = {}; // equivalent to previous example

§ This is a short-hand form of object definition
designed to simplify creating an object with
numerous properties:
var Person = {
name : "Nicholas", // note colon and comma
age : 29 // no comma after last property

}; // note semicolon to close

§ The assignment operator indicates a value is
expected next; in this case, an object literal

Object Literals

65

Object Literals
n As well as properties, we can also add

functionality to object literals via functions:
var Person = {

name : "Nicholas",
age : 29,
job : "Software Engineer",

sayName : function(){
console.log(this.name); // note use of this

} // no comma after last statement
}; // note semicolon to close

n The function sayName() just prints the value of the
name property of the Person object

66

n JavaScript class is introduced in ES6 (ECMAScript
2015). We can now use JavaScript a class to create
objects.
// declare a class
class Person {

constructor(name, age, job){
this.name = name;
this.age = age;
this.job = job;

}
sayName(){ // a method

console.log(this.name);
}

}
// create a new object
let person = new Person("Greg", 27, "Doctor");
console.log(person.sayName()); // prints "Greg"

JavaScript Classes

67

§ Notice in the previous slide:
n By convention, a class name always begins with an

uppercase letter

n You must always declare a constructor inside a class,
whose name is exactly constructor.

n The properties are assigned directly into the object using
the keyword this

n There is no return statement, because constructors in any
language do not have a return statement

n A method is declared with the following syntax:

method_name (…) { … }

JavaScript Classes

68Leverage Your Existing
Programming Skills

n To get the best out of JavaScript for this unit:
n Be sure you understand the power of functions (arguments,

anonymous, closures) and O-O features

n Be familiar with the JavaScript documentation
n Be prepared to research independently as needed
n If you are having trouble with something, keep researching

and working until you solve it

n Do not forget what you have learned in other programming
units
n Follow the best practices shown to you

69

Further Reading
n This lecture does NOT cover the JavaScript language

comprehensively
n You should utilize any of the materials suggested in

the next two slides
n Visit the JavaScript homepage for useful materials,

and visit one of the online tutorials suggested
n JavaScript does not provide much in the way of

syntax error output, so visit the javascriptlint site and
learn to use it correctly

70JavaScript References
§ Professional JavaScript for Web Developers

Zakas, N.C.
n JavaScript homepage:

n https://developer.mozilla.org/en-
US/docs/Web/JavaScript/About_JavaScript

n Online JavaScript tutorials
n http://www.w3schools.com/
n https://www.codeschool.com/courses/javascript-road-
trip-part-1

n For correct usage of JavaScript:
n http://javascriptlint.com/

https://www.codeschool.com/courses/javascript-road-trip-part-1

71

§ JavaScript: a beginner's guide, John Pollock. 2nd ed.,
2004.

§ JavaScript step by step, Steve Suehring.
§ Beginning JavaScript, Wilton, Paul; McPeak, Jeremy,

2010.
§ JavaScript: the definitive guide, David Flanagan, 2010.
§ JavaScript and JSON essentials, Sai Srinivas

Sriparasa, 2013.
§ Principles of Object-Oriented JavaScript, N. C. Zakas.
§ Object Oriented JavaScript, Stoyan Stefanov.

JavaScript References

72Data Type Undefined
1. When a variable is declared using var, but not

initialized, it is automatically assigned the value
of undefined
var message;
alert(message == undefined); // true

§ Generally, you should not explicitly set a variable
to be undefined

§ A variable containing the value of undefined is
different from a variable that has not been defined
at all (i.e. var has not been used)

73Data Type Null
2. Logically, a null value is an empty object

pointer
§ This is why the typeof operator returns "object"

when it is passed a null value
var car = null;
alert(typeof car); // output is "object"

§ It is advisable to initialize an object pointer
variable to null; you can then explicitly check if
the value is null or an object reference
if (car == null){

//do something with car
}

74Data Type Boolean
3. Boolean values are distinct from numeric

values, so true is not equal to 1, and false is
not equal to 0
§ All other types of values have Boolean

equivalents in JavaScript
§ The Boolean() casting function can be called on

any type of data to convert it to its Boolean
equivalent
var message = "Hello world!";
var messageAsBoolean = Boolean(message);

§ The Boolean() casting function will always
return a Boolean value

75

§ The rules for what is assigned when a value is
converted to true or false depend more on its
data type than the actual value
DATA TYPE VALUES CONVERTED TO TRUE VALUES CONVERTED TO FALSE

Boolean true false
String Any non-empty string "" (empty string)
Number Any non-zero number 0, NaN

(including infinity) (See the "NaN" section below.)
Object Any object null
Undefined n/a (i.e. cannot be true) undefined

§ So, it is important to understand what variable you
are using (and what value you are storing in it) in a
flow-control statement

Data Type Boolean

76Data Type Number
4. There are several different number literal

formats
§ The most basic is a decimal integer

var intNum = 55; // integer

§ The floating-point value must include a decimal point and at
least one number after (to the right of) the decimal point
var intNum = 0.1; // or .1 not recommended

§ A special numeric value is NaN, which is used to indicate a
failed mathematical operation (as opposed to a syntax error)

§ Number has various functions and operators such as
parseInt(), parseFloat(), Number.MIN_VALUE,
Number.MAX_VALUE

77Data Type String
5. Strings can be delineated by either double

quotes or single quotes
§ A string beginning with a double quote must end with a

double quote, and a string beginning with a single quote
must end with a single quote

§ There are the following character literals:
LITERAL MEANING LITERAL MEANING
\n New line \r Carriage return
\t Tab \f Form feed
\b Backspace \\ Backslash (\)
\’ Single quote (') - used when a string is delineated by single quotes

Example: 'He said, \'hey.\''
\" Double quote (") - used when a string is delineated

by double quotes Example: "He said, \"hey.\""

78

§ The length property returns the string length
alert(text.length);

§ Like Boolean, other data types can be converted to
string using the String() casting method or the
toString() method

§ Like Java, strings in JavaScript are immutable
§ i.e., once a string has been created, its value cannot

change
§ To modify the string held by a variable, the original

string must be destroyed and the variable filled with
another string containing a new value

Data Type String

79Data Type Object
6. Objects in JavaScript start out as non-specific

groups of data and functionality
§ Objects are created by using the new operator

followed by the name of the object type to create
§ If there are no arguments, the parentheses can be

omitted (though this is not recommended
practice)
var obj = new Object();

§ You can create your own objects by creating
instances of the Object type and adding properties
and/or functionality to it

80

§ The Object type is the base from which all
other objects are derived
§ All properties and methods of the Object type are

also available to other objects
§ Each Object instance has the following properties

and methods:
§ Constructor
§ hasOwnProperty(propertyName)
§ isPrototypeOf(object)
§ propertyIsEnumerable(propertyName)
§ toLocaleString()
§ toString()
§ valueOf()

Data Type Object

Node.js:
Fundamentals
Lecture 2 (B)

ICT375 Advanced Web Programming
Semester 1, 2021

2Lecture Objectives

n Relevance to unit objectives:
n Learning objective 1: Understand the technical

details of key Web technologies
n Learning objective 2: Writing software

n Relevance to assessments:
n Some of your programming in this unit (Labs and

Assignments) will require the use of the Node.js
environment to demonstrate client / server
architecture

3Lecture Outline

n Introduction to Node.js as an implementation of
JavaScript
n Node.js concepts, usage, and performance
n Node.js core modules
n Node.js modules: importing / exporting

n How to get up to speed with Node.js

4Introduction to Node.js

n Node.js is an open-source, cross-platform
runtime environment for developing server-side
Web applications
n Its applications are written in JavaScript and can be

run within the Node.js runtime environment on a
wide variety of platforms (including macOS,
Windows, and Linux/Unix servers)

5

n Node.js provides an event-driven architecture
designed to optimize an application's throughput
and scalability for real-time Web applications
n It provides a non-blocking I/O API so that Web

application do not just hang during I/O
n It uses Google’s V8 JavaScript engine to execute

code
n A large percentage of the basic modules are written

in JavaScript and are designed to reduce the
complexity of writing server applications

Introduction to Node.js

6

n Like PHP, Node.js is primarily used to build
network programs (eg: Web servers)

n The main difference between PHP and Node.js
is that:
n Most functions in PHP block until completion
n Functions in Node.js are designed to post long lasting

tasks to a thread pool, and then return to the caller in a
non-blocking fashion
n This allows queueing parallel tasks without explicit

threading (i.e., you do not have to program threads,
Node.js handles any threading)

Introduction to Node.js

7

n As just mentioned, execution of parallel tasks in
Node.js is handled by a thread pool
n The main thread-call functions post tasks to the

shared task queue
n Inherently non-blocking system functions (like

networking) translate to kernel-side non-blocking
sockets

n Inherently blocking system functions (like file I/O)
run in a blocking way on their own thread

n When a thread in the thread pool completes a task,
it informs the main thread

n The main thread in turn wakes up and executes a
registered callback

Node.js Thread Pool

8

n The Node.js execution model has only a single
process, but generates new threads as required
to handle requests
n This is different from Apache’s pre-forking, which

uses new processes to handle new requests
n If there is a slow task somewhere in the process,

this affects the whole process
n Everything comes to a halt until the slow task has

finished – this is synchronous processing
n For a server, this could possibly mean many clients

having to wait for requests to be responded to

Event-Driven Asynchronous Callbacks

9

n To understand the problem, consider a trivial
example of synchronous processing:
var result = database.query(“SELECT * FROM hugetable”);
console.log(“Hello World!”);

n The interpreter has to read all rows from the
database before executing the log function
n As the database is huge, this may take some time
n Any other processing pending will be put on hold

n Node.js introduces the event loop and uses
callbacks to overcome this problem

Event-Driven Asynchronous Callbacks

10

n Upon starting a server, variables are initiated,
functions are declared, and the event loop process
simply waits for an event to occur
n The event loop runs in a continuous cycle when there is

nothing do, and waits for events

n If a request is received, a thread is generated and
processing of the request is handed to that thread

n When a request has completed, execution returns to the
event loop, which waits for another request

n If multiple threads are executing requests, the event loop
enables each one to finish in its own time and not interfere
with each other

Event-Driven Asynchronous Callbacks:
Event Loop

11

n Callback functions are triggered when an
asynchronous function returns its result:
n That is, when a request thread completes its task, it

returns its result
n This triggers an event, which then calls an

anonymous callback function

Event-Driven Asynchronous Callbacks

12

n So, we can re-write the code from our previous
example to pass in an anonymous function to
our query:
database.query("SELECT * FROM hugetable", function (rows) {

var result = rows;
});

console.log("Hello World!");

n This allows Node.js to handle the query
asynchronously
n Assumes that the database.query() method is part

of an asynchronous library

Event-Driven Asynchronous Callbacks

13

n The query is sent to the database
n Instead of waiting for the entire database read to finish, an

event listener is registered to trigger when the database
server has finished reading

n At this point the result of the query is returned and the
anonymous function is executed

n Meanwhile, execution of the log function occurs
immediately after the event listener is registered (i.e.,
when the query is sent)
n Execution then enters the event loop to process any

incoming requests or completed instructions

Event-Driven Asynchronous Callbacks

14

n Node.js contains a built-in standard library
(providing core functionality) to allow an
application to act as a stand-alone Web server

n Node.js is typically used where light-weight,
real-time response is needed
n Like Web-based gaming and communication

applications
n It can also be used to build large, scalable

network applications

Node.js Libraries

15

n Node.js has access to a rich library of various
JavaScript modules, which simplifies (to a great
extent) development of web applications

n Thousands of open-source libraries have been
built for Node.js, most of which are hosted on
the Node Package Manager (npm) website

Node.js = Runtime Environment + JavaScript Library

Node.js Libraries

16Node.js and JavaScript Globals
n Node.js and browser JavaScript differ when it

comes to globals:
1. Node.js does not directly deal with a browser

window, whereas browser JavaScript has a window
object (which is globally available)

2. Browser JavaScript, by default, puts everything into
its global scope (i.e. window object)

3. Node.js, by default, was designed to put everything
into local scope
n In case we need to access globals, there is a global

object; and when we need to export something, we
should do so explicitly

17Node.js Core Modules

n Node.js does not come with a heavy standard
library

n The core modules of Node.js are a bare
minimum, and other external modules can be
obtained from the npm registry

n A JavaScript module is just a JavaScript file
n A JavaScript module forms its own local scope
n The main core modules (and their classes,

methods, and events) include the following:

18

1. http is the main module responsible for the Node.js
HTTP server
(http://nodejs.org/api/http.html#http_http); its main
methods are as follows:
§ http.createServer(): returns a new web server object
§ http.listen(): begins accepting connections on the

specified port and hostname
§ http.createClient(): is a client and makes requests to

other servers; this is now deprecated, so developers
should instead use http.request()

Node.js Core Modules

19

§ http.ServerRequest(): passes incoming requests to
request handlers
§ data: emitted when part of message is received
§ end: emitted exactly once for each request
§ request.method(): the request method as a string
§ request.url(): request URL string

§ http.ServerResponse(): creates this object internally
by an HTTP server - not by the user - and is used as
an output of request handlers
§ response.writeHead(): sends a response header to the

request
§ response.write(): sends a response body to the request
§ response.end(): sends and ends a response body

Node.js Core Modules

20

2. querystring provides utilities for dealing with query
strings (i.e. data after the ‘?’ in the url)
(http://nodejs.org/api/querystring.html)
§ querystring.stringify(): serializes an object to a query

string
§ querystring.parse(): de-serializes a query string to an

object

Node.js Core Modules

21

3. util provides utilities for debugging
(http://nodejs.org/api/util.html)
§ util.inspect(): returns a string representation of an object,

which is useful for debugging
4. url has utilities for URL resolution and parsing

(http://nodejs.org/api/url.html)
§ url.parse(): takes a URL string and returns an object

Node.js Core Modules

22

5. fs handles file system operations such as reading
from, and writing to, files
(http://nodejs.org/api/fs.html)
§ There are synchronous and asynchronous methods

in this library:
§ fs.readFile(): reads files asynchronously
§ fs.writeFile(): writes data to files asynchronously
§ fs.readFileSync(): reads files synchronously
§ fs.writeFileSync(): writes data to files synchronously

Node.js Core Modules

23

§ Other core modules are net, dgram, https
§ You should investigate further the main core

modules covered, and the other core modules,
to become familiar enough with them to work
with them correctly

§ The official Node.js website provides more
details of all core modules, available at:
https://nodejs.org/api/modules

Node.js Core Modules

24

§ There is no need to install or download any of
the core modules, they are automatically
installed with the Node.js environment

§ To include them in your application, all you
need is to use the require method:
var httpvar = require('http');

Node.js Core Modules

25

§ Note the use of the keyword require
§ Also, the core module being imported must be

in single or double quotes – in this case, 'http'
§ The statement assigns an http object to the

instance variable httpvar
§ httpvar provides access to the public methods

that are supplied by the http module
(mentioned earlier)

Node.js Core Modules

26Importing / Exporting Modules

§ Importantly, the variable httpvar can be given
any name, but it is common practice to name it
after the module; so in the previous example we
could name it just http

§ In all of our future examples we will use this
convention

§ You can also export your own modules, and
then import them into other scripts

27

n In browser JavaScript (mentioned in slide 16)
there is no way to include modules
n Scripts are supposed to be linked together using a

different language (eg: HTML), but dependency
management is lacking

n With Node.js, CommonJS and RequireJS help
solve this problem
n Node.js borrowed many things from the CommonJS

concept
n http://www.commonjs.org/
n http://requirejs.org/

Importing / Exporting Modules

28

n The CommonJS defines an API to handle many
common application needs, ultimately providing
a standard library as rich as those of Python,
Ruby and Java

n An application developer can write an
application using the CommonJS API and then
run that application across different JavaScript
interpreters and host environments

Importing / Exporting Modules

29

§ With CommonJS-compliant systems, you can
use JavaScript to write:
§ Server-side JavaScript applications
§ Command line tools
§ Desktop GUI-based applications
§ Hybrid applications

Importing / Exporting Modules

30

§ RequireJS is a JavaScript file and module
loader

§ It is optimized for in-browser use, but it can be
used in other JavaScript environments like
Node.js

§ Using a modular script loader like RequireJS
improves the speed and quality of your code

Importing / Exporting Modules

31Importing / Exporting Modules

§ As an example, let us make a module to start a
server
§ We put the code in a script called server.js

§ We need to export the necessary parts of our
script
§ Other scripts that may wish to utilize the server

module only need to run the script to start the
server

§ So, to make a module to start a server, we can put
the server into a function named startServer and
export the function:

32Importing / Exporting Modules:
Exporting A Server

var http = require('http');
function startServer() {
function onRequest(request, response) {

response.write('hello client!');
response.end();

}
http.createServer(onRequest).listen(8888);
console.log('Server running');

}
exports.startServer = startServer;

§ Don’t worry if you do not understand the code details at this
point, we will discuss this server script next week in more detail

§ The main point is that we have exported the server

33

§ The server can now be imported into other
scripts that may wish to use it

§ For example, in a main application script called
index.js, we can import the module and start
a server
var server = require('./server');

// some code

server.startServer();

§ The application index.js now has access to
the exported functions of server.js

Importing / Exporting Modules:
Using The Server

34

§ So, to export an object in Node.js, use:
exports.name = function_name;

§ Another example of exporting an object:
var messages = {

find : function(req, res, next) { ... },
add : function(req, res, next) { ... },
format : 'title | date | author'

}
exports.messages = messages;

Importing / Exporting Modules

35

§ An example of importing this code would be:
var msgs = require('./messages’);

§ This assumes that messages.js is located in
the current working directory and contains the
previous code to export the object

Importing / Exporting Modules

36Library Modules

n We have seen that to use core modules, we
just use the require directive
require('http');

n We have also seen how we can export our own
modules for use by other scripts
n These too use the require directive, providing the

correct path to the script that exports the module is
supplied

n What about external library packages?
n To import modules from external libraries requires

another mechanism

37Library Modules With NPM

n Node.js platform provides a package
management system called the Node Package
Manager (npm), which allows for seamless
Node.js package management
(https://npmjs.org/doc/files/npm-folders.html)
n Installation of packages works similarly to Git in that it

traverses the working tree to find a current project

§ Install Node.js packages as follows:
npm install <package_name>

§ An example:
npm install node-formidable

§ To then use this package in a program, write:
var formidable = require('formidable');

38Library Modules With NPM

39

n There are two ways to install packages with
npm:

1. Globally: you would typically do this as the admin
or superuser, for packages to be available for all
users; you cannot do this in the labs, but can on
your own computer

2. Locally: each user installs their own packages
§ You choose which kind of installation to use

based on:
§ How you want to use the package in a project
§ Other system-wide considerations

Library Modules With NPM

40

1. If you are installing a package that you want all
users to be able to use on the command line,
install it globally
§ To install a package globally you supply the -g flag

to the npm install command

npm install <package_name> -g

§ The package binaries end up in your PATH
environment variable

§ Manual pages are also installed
§ Again, only the superuser can install globally

Node.js Modules: Global

41

2. If you are installing a package that you only
want to use in your own project, using
require('package_name'), install it locally
§ This is npm’s default behaviour
§ When installing locally on command line, you must

change directory to where the scripts in your
project or application are located

§ Then issue the command to install the desired
package (see next slide)

Node.js Modules: Local

42Installing Locally with npm

§ A package can be downloaded and installed
locally with the command:
npm install <package_name>

§ This will create the node_modules directory in
your current working directory (i.e., where you
are located in the file system), if one does not
already exist

§ The package will be downloaded and installed
under that directory

43

§ To confirm that npm installation worked
correctly, check to see that a node_modules
directory exists and that it contains a directory
for the package(s) you installed
§ You can do this on Unix or Windows systems
Eg:

npm install mysql

ls node_modules (Linux) OR

dir node_modules (Windows)

mysql

Installing Locally with npm

44Package Usage

n Once the package is installed under the
node_modules directory, you can use it in your
script
// Eg: in a script dbase.js

var mysql = require('mysql');

var connection = mysql.createConnection({…});

connection.connect();

connection.query(…);

n Run the script on command line using:
node dbase.js

45

n If you had not properly installed the mysql
package, you would receive this error:
module.js:340

throw err;

^
Error: Cannot find module 'mysql';

§ This could probably mean you have not been
located in the correct directory when you installed
the package

§ To fix it, run npm install mysql in the same
directory as your script dbase.js

Package Usage

46Which Package Version?

§ If there is no package.json file for the package
just installed, the latest version of the package
is installed

§ If there is a package.json file, the latest
version of the package – satisfying the
semantic versioning rule declared in the file
package.json – is installed

47What Is package.json?

n The package.json file is a good way to manage
locally installed npm packages

n A package.json file offers the following:
1. It serves as documentation for the packages your

project depends on
2. It allows you to specify the version of a package

that your project can use by using semantic
versioning rules

3. It makes your build re-produceable, which means
that its easier to share with other developers

48package.json:
Minimum Requirements

§ As a bare minimum, a package.json file must
have the following properties:
§ "name" - all lowercase, 1 word, dashes and

underscores allowed, no spaces allowed
§ "version"
Eg:

{

"name": "my_package",

"version": "1.0.0"

}

§ Notice the object literal notation

49Creating a package.json

n To manually create a package.json file, type on
command line:
npm init

n This will initiate a command line questionnaire
that will conclude with the creation of a
package.json, in the directory where you
initiated the command

50Creating a package.json

n For correct placement of the package.json file,
you should be located in the directory where the
package is installed, before issuing the
command

n However, the extended command line interface
questionnaire experience may not be for
everyone

51

n You can expedite the process with the default
package.json by typing:
npm init with the --yes or -y flag

n This will ask you only one question, author
npm init --yes

§ The package.json file will be written under the
package directory (which is under
node_modules)
§ Make sure you change to the package directory

before issuing the command

Creating a package.json

52

Eg: /home/macca/node_modules/my_package/package.json
{

"name": "my_package",
"version": "1.0.0",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "macca",
"license": "ISC",
"repository": {

"type": "git",
"url": "https://github.com/macca/my_package.git"

},
"bugs": {

"url": "https://github.com/macca/my_package/issues"
},
"homepage": "https://github.com/macca/my_package"

}

Creating a package.json

53Explanation

name: defaults to author name unless in a git directory, in which
case it will be the package name in the repository

version: always 1.0.0
main: always index.js
scripts: by default creates an empty test script
keywords: empty
author: whatever you provided the CLI
license: ISC
repository: will pull information from the current directory, if present
bugs: will pull information from the current directory, if present
homepage: will pull information from the current directory, if present

54

§ You can also set several configuration options
with the init command – Eg:
npm set init.author.name "macca"

§ To specify the packages your project depends
on, you need to list the packages you'd like to
use in your package.json
§ "dependencies": are packages required by your

application in production
§ "devDependencies": are packages only needed for

development and testing

Specifying Packages

55Manually Editing package.json

§ You can manually edit dependencies in your
package.json file

§ You need to create the attribute in the package
object called "dependencies" that points to an
object

§ This object will hold attributes named after the
packages you would like to use
§ These point to a semantic versioning expression

that specifies what versions of that package are
compatible with your project

56

§ If you have dependencies you only need to use
during local development, you will follow the
same instructions as above but in an attribute
called "devDependencies"

Manually Editing package.json

57

{
"name": "my_package",
"version": "1.0.0",
"dependencies": {

"my_dep": "^1.0.0"
},
"devDependencies": {

"my_test_framework": "^3.1.0"
}

}

Example Dependencies

58

n The easier way to add dependencies to your
package.json is from the command line, by
flagging the npm install command with either
--save or --save-dev

n To add an entry to your package.json
dependencies:
npm install <package_name> --save

n To add an entry to your package.json
devDependencies:
npm install <package_name> --save-dev

Specifying a package.json

59

n npm uses Semantic Versioning (or SemVer or
semver), to manage versions and ranges of
versions of packages

n If you have a package.json file in your package
directory and you run npm install, then npm
will look at the dependencies that are listed in
that file and download the latest versions
satisfying semver rules for all of those
dependencies

Managing Dependency Versions

60

Further Reading

n This lecture provides a brief introduction to
Node.js

n Next week we will cover in more depth the
client and server aspects of Node.js

n You should utilize any of the materials
suggested in the next two slides

n Visit the Node.js homepage for useful materials
n You can visit the online tutorials suggested

61Node.js References

§ Node.js homepage:
n https://nodejs.org/en/

n Online Node.js tutorial
n http://www.tutorialspoint.com/nodejs
n https://docs.nodejitzu.com

§ Beginning Node.js, Basarat, A.S., 2014.
§ Practical Node.js, Mardan, A., 2014.
§ Node.js In Practice; Young, A., and Harter, M., Jeremy,

2014.
§ Node Up And Running, Hughes-Croucher, T., and

Wilson M., 2012.

62NPM References

§ Node.js homepage:
§ https://nodejs.org/en/blog/npm/npm-1-0-global-vs-

local-installation/
§ https://docs.npmjs.com/getting-started/installing-

npm-packages-locally/
§ Online Package.json
§ https://docs.npmjs.com/files/package.json

